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ABSTRACT

The use of advanced techniques can greatly improve the

effectiveness of Monte Carlo simulation calculations. As a

demonstration model, the Navy's Antisubmarine Warfare Air

Engagement Model, APAIR, which simulates a single aircraft

hunting and destroying a submarine, was selected. Possible improve-

ments in random number generation are presented; however, the

study centers on implementation of variance reduction techniques.

Two test cases, typical of APAIR implications, were chosen.

Examples illustrating the use of the statistical estimation, expected

value, systematic sampling, antithetic sampling, correlated sampling,

history reanalysis, and importance sampling were run. A comparison

of variances with the unmodified APAIR showed the effectiveness of

variance reduction techniques. Efficiencies, equivalent to reduced

running time to obtain the same variance, of nearly a factor of 20

were obtained in specific cases. It was felt that throung experience

and careful effort overall improvements of a factor of 10 could be

expected.
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EXECUTIVE SUMMARY

Contemporary design and construction of large scale Monte Carlo

systems analysis programs seldom consider incorporation of the efficient

simulation techniques that have been developed, tested and proven successful

in various technical disciplines. Most notable among these are random

number generation and variance reduction schemes that have been routinely

used in radiation transport to provide vast improvements in Monte Carlo

simulations.

One objective of a project sponsored at Science Applications, Inc.

(SAI) by Code 462 of the Office of Naval Research was to develop these tech-

niques to the point where they would be generally applicable. Basically, this

involved development of improved techniques for selecting probability distri-

butions, schemes for generation of random numbers and procedures for

variance reduction for general application in Monte Carlo simulation. The

results of these developments are presented in Refs. 1, 2, and 3.

Another objective of the project was to demonstrate their applica-

bility to a large scale Navy simulation program.

It is the purpose of this document to summarize the results of the

demonstration effort for the Antisubmarine Warfare Air Engagement Model
A -7-,A Tr (4, 5s 6)

. e iciency u.maLes showed that significant improvements

in APAIR running times (about a factor of 20 in some cases) can be achieved

using the improved simulation techniques investigated during this project.

It was generally felt that by judicial selection of variance reduction schemes,

that running times for the same accuracy can be reduced by a factor of 10

for many APAIR problems.
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1. INTRODUCTION

The research performed in a project sponsored by the Office of

Naval Research (Code 462) at Science Application, Inc. (SAI) over the past

year was directed toward achieving the following objectives:

• Develop improved probability selection techniques.

* Develop improved random number generation procedures for
selected probability distributions.

" Improve variance reduction technology.

" Demonstrate the application of improved simulation technigues
to the ASW air engagement simulation model APAIR. (4, 5, 6)

The results of the effort performed in the first three areas above are docu-

mented in Refs. 1, 2 and 3 respectively. It is the purpose of this document

to summarize the results of the effort that involved demonstration of improved

Monte Carlo Simulation techniques for the APAIR ASW engagement model.

The APAIR model, selected for the study here, is a Monte Carlo

simulation of the full engagement between one aircraft and one submarine.

The general version (APAIR 2.6) simulates the detection, localization and

attack phases of airborne ASW missions. The model ,s particularly suited

for this study since it is a relatively long running prog ram, and because it

is in rather wide 'ise, improvements in the running ime would be most

welcome. It is emphasized, however, that the objective was not to critique

the APAIR model but rather to evaluate the effectiveness of efficient tech-

niques which are not commonly used in Monte Caelo simulations. It should

also be mentioned that not only are the techniques studied here applicable to

the APAIR program but also to other ASW simulation models such as

APSURV, (7) APSUB and APSURF. (8)

1



The version of APAIR used in the study was provided to SAI by Code

141, Naval Undersea R/D Center (NUC) in San Diego. In addition to the
program, Code 141 also provided SAI with a "representative" set of data

for demonstration purposes only. No attempt was made to interpret any

of the results beyond that necessary to evaluate the improved simulation

efficiency. However, the results are presented in sufficient detail that

this document should be generally useful to the analyst interested in improl, -

ing the random number generation schemes and incorporation of variance
reduction in APAIR.

Of the three areas considered for improvement in APAIR (probab-

bility distribution selection, random number generation and variance

r 'duction), variance reduction proved to be the most successful. Improve-

mezt in the probability distribution modeling was restricted due to the lack
of sufficient data on input parameters (such as aircraft navigation errors,

sonobuoy fixes and drop errors, aircraft weapons effects, tactics, etc.).

In the area of random ,umber generation, several modifications
were identified which would not cnly improve the generation of random num-

bers but also increase the ease with which random numbers could be generated

on various computers. The latter was accomplished by developing a random
number generator that was machine independent. This is particularly impor-
tant when comparison between results from different machines or facilities
are desired or when the program is to be made operational at new facilities.

The third area involved the application of variance reduction techniques.

This proved to be extremely fruitful. The variance reduction techniques used

here were developed primarily for application to radiation transport problems

and have not been widely used. However, it was shown conclusively here
that a much broader application is warranted. For example, in some cases

improvements in efficiency (i. e., the running time required to achieve the

2



same variance) was a factor of almost 20. An overall improvement of a

factor of 10 could generally be expected if the effort to understand and care-

fully apply the various techniques is expended. A summary of the improve-I ment in efficiency in terms of running time reduction is shown in Table 1. 1

for the various variance reduction techniques applied to APAIR.

In the following section of the report the improvements in random

number generation are described. The use of variance reduction in APAIR

will be described in detail in Section 3.

Since the APAIR study was for demonstration purposes only, it should

be mentioned that only expedient modifications were made to the program.

Therefore, the APAIR program at SAI containing the improvements discussed

.s not considered to be a version that would be generally useful. However,

it has been proposed that these modifications be made to APAIR to provide

for user flexibility and improved efficiency in the future.

3
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2. RANDOM NUMBER GENERATION IMPROVEMENTS IN APAIR

In this section, the potential improvements in the APAIR random num-
ber generators are discussed. It is not anticipated that replacement of the

random number gen -ators currently uzed in APAIR would significantly re-

d.uce the total program running time in most cases, since the fraction of

time spent in generating random numbers in a typical application is not

large. However, in some cases, the approaches recommended here will

be faster, more accurate and more convenient.

Possibly the most significant improvement for APAIR random number

generation would be in the u.o of a machine independent uniform random num-

ber generator. This will automatically permit identical sequences of random

numbers to be generated on different computers. The main advantage in this,

of course, is that identical results can be obtained on different machines and

at different installations for comparison purposes. Furthermore, since the

existing random number generator now used in APAIR is machine dependent,

transferring the code to other machines can cause considerable difficulty.

Use of the machine independent version described here would eliminate this

problem. The use of the machine independent uniform random number genera-

tor and improvements in the normal distribution will be discussed below.

2.1 UNIFOR, RANDOM NUMBER GENERATOR

The uniform random number generator in the current version of APAIR

obtained by SAI from NOC and designed for use on the Univac 1108 is a mixed

congruential generator employing the algorithm

Xn+1 = 27095269935.X n + 2049 (mod 2 35)

where Xn and Xn+I are successive random numbers. This generator has

not been subjected to the Coveyou-MqcPherson analysis (Ref. 9), the most
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exacting test for random number generators currently known. Therefore, its

validity as a random number generator is not proven. There are, however,

no a priori reasons to suspect that thi-s generator is faulty.

This generator is, however, ,not machine independent. It will work

only on the Univac 1108 and other machines with a 36-bit word length and a

similar negative integer representa-fion. It will not work, for example, on

an IBM 360 computer. A better choice of a basic random number generator

would be the machine independent generator, MIRAN, described in Appendix

A. This would allow greater flexibility in exchange of program and problems

between different computer facilities and in addition uses an algorithm of

proven validity. Random number generation occupies such a small portion

of the overall APAIR computing time that the loss of efficiency entailed in

using MIRAN would not cause an increase in the total running time of APAIR

problems.

2.2 NORMAL RANDOM NUMBER GENERATOR

The normal distribution is used in APAIR to generate random varia-

bles such as aircraft navigation errors (inertial, tactical, navigation, reset,

areas of uncertainty for sonobuoy fixes, etc.). The APAIR procedure currentl

used to obtain a normal random variable from the distribution:

f(x) = e (2.1)

is to generate an approximate normal random deviate using

x = o (Ru.6 . (2.2)

6



Where Rul, ... ,Rl 2 is a set of 12 independent random values from the

uniform distribution U(0, 1). This procedure takes about 105 microseconds

on a UNIVAC 1108 using assembly language.

The result used in (2.2) is based on the central limit theorem(10 )

and is, therefore, approximate. For example, the range of X using (2.2)

is limited to

Iu - 6a :5 X5 g+ 6 (2.3)

which is probably adequate in most situations. Difficulty could arise when

very small probability events (i. e., outside the range of X as given by

(2. 3)) are important.

A better method for generating random numbers from the normal

distribution which is both exact (within machine accuracy) and requires only

30 microseconds is a technique developed by Marsaglia(l l ) and documented

in Ref. 2. A routine using this approach, is shown below along with the

corresponding flow diagram in Fig. 2.1.

7
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Sample Routine

FUNCTION RANORM (DUMMY)
R = RANUMB(R)
IF (R. GT.0. 8638) GO TO 10
RANORA = 2. *(RANUMB(X) + RANUMB(Y) + RANUMB(Z) - 1.5)
RETURN

10 IF (R GT.0. 9745)%. GO TO 20
RANORM = 1. 5*(RANUMB(X) + RANUMB(Y) - 1.0)
RETURN

20 IF (R. GT.0. 997302039) GO TO 100
25 X = 6. *RANUMBX) - 3.0

Y = 0. 358*RANUMB(X)
_XSQ = xx

GX = 17. 49731196*EXP(-XSQ*. 5)
AX - ABS(X)
IF (AX. GT. 1. 1) GO TO 30
IF (Y. GT. (GX-17. 44392294 + 4. 73570326*XSQ + 2. 157987544*AX))
GO TO 25
RANORM = X
RETURN

30 AX3 = 2.367985163*(3-AX)**2
IF (AX. GT. 1.5) GO TO 40
IF (Y. GT. (GX-AX3-2. 157987544*(I. 5-AX))) GO TO 25
RANORM = X
RETURN

40 IF (Y. GT. (GX-AX3)) GO TO 25
RANORM = X
RE TURNSN100 X = SQRT (9-2*(ALOG(RANUMB(X)))

IF (RANUMB(X). GT. 3/X) GO TO 100
IF (RANUMB(X). GT. 0. 5) X = -X
RANORM = X
RETURN
END

As written above, the routine generates a normal standard deviate

(i. e., a random number from (2. 1) with a- = 1 and gt = 0) defined as N(0, 1).

It is then left up to the calling program to multiply by the standard deviation

and add the mean if a generalized normal deviate is required. That is, for

a distribution with mean p and variance o-2, (i. e., Eq. 2. 1) the correct

9



random number would be aN(O, 1) + i , where N(O, 1) is a random number

from a distribution with A = 0 and a =1.

Therefore, if the algorithm prescribed above is used in APAIR, the

running time for generation of random numbers from a normal distribution

would improve almost a factor of 4 and it also will provide exact answers.

10



3. VARIANCE REDUCTION IMPROVEMENTS IN APAIR

The type of problems solved by APAIR provide an excellent opportunity

to apply a wide variety of variance reduction techniques which can substan-

tially improve APAIR efficiency. Several of these were tried on APAIR with

generally excellent results. In some applications the gain in efficiency was

estimated to be almost a factor of 20. It appears that a factor of 10 improve-

ment can readily be accomplished in many APAIR applications if the time

and effort is expended to understand and implement the appropriate techniques.

It is unquestionably to the benefit of the analyst to follow such an approach

when long running tiries are of concern.

Resources available to perform the study did not permit application of

all the possible variance reduction schemes available. Therefore, a selected

number of techniques representing a broad range of characteristics were applied

to various types of ASW problems. These included:

* Statistical Estimation using an expected value of kill at each
torpedo drop rather than scoring actual kills based on Monte
Carlo simulation. Two cases were studied corresponding to
different types of Magnetic Anomaly Detectors (MAD).

* Expected Value replacing actual submarine kill by a reduction
in the "survival value" of the submarine for computing percent
kill as a function of which torpedo caused the kill (first, second,
etc.). This was also performed for two types of MAD gear.

* Systematic Samplig selecting initial starting coordinates for
t he submarine ocation, using two types of MAD gear. Two types
of systematic sampling were considered.

a Antithetic Variates used to select initial starting locations of the
submarine.

* Correlated Sampling using random number control to generate
identical histories to a point where differences in two types of
MAD gear lead to a divergence of histories. This was used to
estimate differences in effectiveness between Two types of MAD
gear.

11



* History Reanalysis where one run was made unbiased and the second
generated using weighting factors on the histories from the first
to correct for differences in MAD gear. This was also used for
estimating differences in effectiveness between two types of MAD
gear.

• Importance Samling performed with an importance function
weighted to generate correlated samples for the two types of MAD
gear. Again, this was used for estimating differences in effective-
ness between two types of MAD gear.

As a basis for quantitatively characterizing the calculational efficiency

of variance reduction over straightforward or crude sampling (i. e., with no

variance reduction) the following definition was used throughout

variance with crude sampling)
=variance with the variance reduction technique

APAIR running time with crude samplingAPAIR running time with variance reduction"

Crude sampling represents the procedure currently used in APAIR. Using

the above definition for efficiency, a value of c = 2 for application of a

variance reduction technique implies a reduction in computer time by 1/2

to achieve the same variance as would be obtained with crude sampling.

The rationale for using this as an efficiency factor is discussed in Ref. 3.

It should be recognized that the efficiency, r, as defined above is a ran-

dom variable since the variances with and without variance reduction are esti-

mates generated from the statistics of the simulation and not theoretical analyses.

A batching method was used in estimating most of these variances. The proce-

dure is presented in Ref. 3 and will not be detailed here. It is important to

recognize, however, that the efficiencies presented are estimates and, there-

fore, are subject to a certain variability. In fact, the variance estimates are

second order quantities and thus this variability is generally much greater than

that encountered for the primary quantity whose variance is being estimated.

12



Fromn theoretical arguments the error in the efficiency figure could easily be

as large as - 45%. In some of the cases presented in this report, there are

large correlations between the crude simulation and the variance reduced tech-

nique and thus the variability of the efficiency figure is much less than this

theoretical maximum. Since efficiency is so difficult to calculate with any

accuracy, calculations were made for five similar parameters-kill probability,

mean time to kill, number of stores used per kill (for three types of stores:

torpedoes and two kinds of sonobuoys). In general the variance reduction

efficiencies for these parameters should not be greatly different, therefore,

the spread in efficiency values for these five parameters should give a rough

idea of the variability of the efficiency figure for each variance reduction

technique. As an improved estimate of the efficiency of each technique, a

simple average of the five efficiency figures is presented in the tables.

The initial variance reduction technique implemented was statistical

estimation. Implementation involved patching iuto the report generator

portions of the program to call subroutines designed to score results using

statistical estimation. These routines contained the batching needed for

estimation of variances, print statements for the results, etc. To minimize

the programming changes needed to implement subsequent techniques, the

statistical estimation subroutines were left in the program to calculate

and print results. Thus each of the subsequent comparisons that were done

actually contrasted a variance reduction technique plus statistical estimation

to a case with only statistical estimation. However, with the exception of

the expected value technique as discussed in Section 3.3, it was felt that

the efficiency factors obtained were essentially the same as if the variance

reduction technirque alone had been compared to crude Monte Carlo.

Each of the variance reduction techniques used here have been described

in detail in Ref. 3 and will not be presented to that extent in this report.

13



However, in the following discussions, the techniques and the results of the

application of the techniques will be described in sufficient detail to provide

an appreciation for the steps involved. Before proceeding, a brief descrip-

tion of the general type of APAIR problem considered in the study will be

presented.

3.1 APAIR PROBLEM DESCRIPTION

APAIR can be applied to a variety of .SW problems involving one
aircraft in pursuit of a submarine. The problem addressed here is con-

sidered to be a typical application of APAIR in that it is designed to esti-

mate the effectiveness of the aircraft and sensors in finding and killing a

submarine.

A total simulation of APAIR is comprised of a series of independent
histories. A single history in the simulation proceeds as follows:

The initial aircraft location, direction and speed are chosen. The

submarine location, bearing and speed are also chosen according to spe-

cified random characteristics. The aircraft proceeds to execute certain

tactics with the objective of detecting the submarine.

Once the submarine is detected, the aircraft enters a localization

phase where certain maneuvers are performed and sonobuoys =-e dropped
in a specified pattern. In addition, Magnetic Anomaly Detection (MAD)

gear is used in the localization process. Two typical problems, differing

only in the range of detection of the MAD gear, were utilized in this study.

If localization of the submarine has been achieved, the aircraft

proceeds to drop a torpedo which may or may not result in a kill. If no

kill is realized, the aircraft then proceeds through further localization to

attempt another torpedo drop, again following specified maneuvers. The

history can be terminated in several ways which include exceeding a time

limit, achieving a submarine kill, or exhausting aircraft stores (torpedoes

or sonobuoys).

14



Once the history is terminated, by any event whatever, a new

history is initiated. When the specified number of histories are completed,

final results are tabulated and printed out. Among the parameters esti-

mated by APAIR the following were used in this study to illustrate the effi-

ciency of variance reduction:

0 Probability of a submarine kill

* Average time used to achieve a submarine kill

0 Number of stores used per submarine k11l for three types of
stores. One type was torpedoes and the other two were two
kinds of sonobuoys. (As the exact identification of the sono-
buoy types was not clear from our documentation and irrele-
vant to this study, they are merely labelled type A and type B
in this report. A third type of sonobuoy was, for the tactics
in our sample problem, not a random variable and thus was
not included)

Improvement in the estimate of these basic parameters was the

objective in using the variance reduction techniques considered here. Of

course, such an improvement can also be achieved by increasing the num-

ber of histories, although the running time can become prohibitively long.

For example, the above problem required approximately 15 minutes on a

Univac 1108 to generate 100 histories. The desirability for achieving

variance reduction is therefore obvious.

15



3.2 APPLICATION OF STATISTICAL ESTIMATION

In the course of an individual history, the aircraft will drop a torpedo

when it thinks it has determined the submarine's location and heading. The

actual submarine speed, aspect, and range are used to determine, from input

tables, the probability, PK' that the torpedo will destroy the submarine. A

random number, Ru, from a uniform distribution is generated and compared

to PK" If R< pK' a kill is scored and the history is terminated. If Ru >PK

no kill occurs and no scoring is done; the game continues with more localization

and possibly, another attack. If other torpedoes are dropped, a similar proce-

dure is used to determine if a kill is scored later in the game.

At the completion of the simulation, the probability of -submarine kill is

estimated as

A
pK= n/N

where

n = number of kills scored and

N = number of histories run.

For estimating the time to kill, APAIR currently uses

n

TK= 1/n

i=1

where n is the number of kills scored and TK ; i = 1, ., n the time taken

to effect a kill in the ith history which ended in a kill. Similar procedures are

used for the other parameters (number of torpedoes and sonobuoys used per

kill) estimated.
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In the statistical estimation technique for variance reduction, the scoring

was changed so that actual kills are not scored, but rather the expected value

of kill, pK' was scored for all torpedo drops regardless of whether or not a kill

was achieved. However, the simulation game itself was not modified i-, any

way. That is, a random number, Ru, was still used at each torpedo drop

to determine whether the history was terminated by a- kill or more maneuvers

took place. The outcome of this random choice did not affect the scoring of PK"

Specifically, define

PKij = probabilityof killfor the jth torpedo dropped during history i.

ni = numbur of times a torpedo was dropped during history J.

Then, the total score generated for history i is

n,

p..Kij N
j= 1

and the estimate for the probability of kill for the entire simulation (N histories)

is

N ni

PK= II PKiji=1 J=1

In the case of the remaining parameters, a similar approach was taken.

For example if

TKij = time to torpedo detonation for the jth torpedo dropped inhistory i

then the estimate for time to kill is given by

17



N ni

TK = 1/N p 3 PKijTKij
i=1 j-1

APK

Similar expressions were used for the remainder of the parameters being

estimated.

The computational time per history is very slightly increased using

this technique since the same game is still being played but there is a little

more bookkeeping in the scoring. However, this is offset by the resulting

variance reduction.

In demonstrating the statistical estimation technique, both the crude
Monte Carlo estimate (counting actual kills) and the statistical estimate (sum-

ming over P K values) were calculated in the same run and, therefore, used
the same histories. This produces a high degree of correlation between the

crude and the statistical estimation results which reduces the variance of the

efficiency figure. Two problems were run using MAD gear having long and
short range detection capabilities respectively. The variances obtained with

statistical estimation and with crude Monte Carlo are shown in Tables 3.1 and
3. 2 along with the resulting efficiency factor for the use of this variance reduc-

tion technique. The sample variances were estimated using the statistical

techniques described-in Ref. 3 to obtain the variance results indicated. The

actual estimated values of the paiameters are not presented since they are not

considered to be germane to comparison of the efficiencies. Therefore, only
the variances in the two cases are shown along with the efficiencies obtained

in estimating the paramcters with variance reduction.

The efficieneies obtained varied from 1.00 (implying no improvement)
t0 as high as 1.50 (implying a factor of 1.5 reduction in running time). However,
thes. extreme values probably represent statistical fluctuations in the variance

18
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estimates rather than real efficiency improvement. Average efficiencies of

1. 15 for the short MAD problem and 1.23 for the long were achieved. Thus,

it can be seen that use of statistical estimation could have made roughly a 19%

improvement in APAIR run times. Use of statistical estimation is justifiedsince it

involves a very trivial modification to the program.

3.3 EXPECTED VALUE TECHNIQUE FOR ESTIMATING EFFECTIVENESS
OF MULTIPLE TORPEDO DROPS

The expected value technique differs from statistical estimation in that

the actua I game or simulation being played, as opposed to just the scoring tech-

nique, is changed to replace a random choice with an expected value for the out-

come of that choice. For example, instead of generating Ru to test against

PK with the choice of either killing or missing the submarine, the submarine is

given an initial "weight" of 1. 0. If the first torpedo dropped has a pK of. 80,

then 80%i of the submarine is deemed killed but 20% survives and the weight is

reduced to .2. If a second torpedo is dropped which has a PK of .50, then half

of the remaining weight, or. 1, is killed, while a weight of. 1 continues to

survive. The history is never ended due to a submarine kill but continues until

some other limit, such as using up the mission time or using up the stores of

torpedoes or sonobuoys, stops the history.

Such a technique could be useful in studies such as determining the
effectiven.ss of the number- off to1--'-caried.. a- a f h "..... . . .r-edrj a allrett~ or thle WurLn-

iness of the tactics for relocalization and reattack following a miss by the

first torpedo. In these (.a. ,_s one is aot so much interested in the overall kill
probability as in the kills scored by the second, third, etc. torpedoes. In a

crude Monte Carlo most of the kills are made by the first torpedo and the his-

tory ends there. These histories add nothing to the knowledge of tactics in-

volving reattack or to the kill value of the second torpedo, but simply con-

stitute wasted time towards calculating the items of importance. In fact, what

is worse, these histories add variance to the overall kill probability. It would
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I
be prohibitively expensive to determine the value of reattacks from a crude

Monte Carlo due to the large proportion of the running time being spent on

histories of no value to this parameter.

Using the expected value technique outlined above, most histories will

contribute to knowledge concerning the second and third torpedoes as the history

will always continue after the first torpedo drop. For example, one of the crude

Monte Carlo problems run had (out of 100 histories) 78 cases in which the first

torpedo was dropped, 10 in which the second was dropped, and only one history

where the third torpedo was dropped. Using the expected value technique, the

same problem had 79 histories with one torpedo drop, 65 histories in which the

second torpedo was dropped, and 43 histories of a third torpedo drop.

Estimation in the expected value case was done as follows. If PKij is the kill

probability for the jth torpedo in the ith history and wij is the submarine

weight at the time that torpedo was dropped, then

N

PKj =11N PKijW ij

th .this the kill probability of the j torpedo. Likewise, the time to kill by the j

torpedo is given by

N

I Kj 7- T Kijfij i1

PKj i4

where TKij is the time of detonation of the jth torpedo on the ith history.

A similar formula is used to estimate the numbers of sonobuoys dropped per

kill by the jth torpedo. (Obviously the number of torpedoes used is constant

in this case, so this parameter was omitted.)

22



For this technique, two sample problems were run; one with the long-

range MAD gear and one with the short-range MAD gear. In each case APAIR

was run twice, with and without the expected value technique. To reduce the

variance of the efficiency factors, the histories in the two runs were correlated

using the technique described in Section 3. 6. This kept the histories in each

run identical through the first torpedo drop. The resulting efficiencies for the

second and third torpedo drops for both cases are shown in Table 3. 3. There

were no examples of a fourth torpedo drop in any of the runs. In the short MAD

case, there were no examples of a third torpedo drop in the crude Monte Carlo
run, so the efficiency of the variance reduction technique is theoretically in-

finite in this case. However, using the PK estimate from the expected value

run, it was possible to estimate the number of crude Monte Carlo histories that

would be necessary to get similar statistics; this led to the efficiency factor of

10 for PK shown for the third torpedo in the short MAD case.

The running times for the crude and expected value calculations are

shown in Table 3.4. As anticipated, the expected value histories took much

longer to run because they did not stop at the first torpedo drop (as most of

the crude Monte Carlo histories did) but went on to simulate a second and a

third torpedo drop. This extra running time is used to generate information

concerning the parameters of interest, i. e., the kills made by second and third

torpedo drops, and, therefore, the overall efficiency is much improved as

Table 3. 3 shows. It is instructive to consider the efficiency for the first

torpedo drop. As the histories in the two runs were identical through the first

torpedo drop, the variances are identical for the first torpedo parameters.

Due to the increased running time, the first torpedo efficiencies will be lower

by. 49 (for the short MAD) and . 36 (for the long MAD). The extra running time
used in calculating second and third torpedo drops is wasted as far as first

torpedo drops is considered and this lowers the efficiency. This illustrates

a common point of variance reduction: any technique which reduces variance

23



C) -

00 0

a)

0 S= 0a 'a &a

p.ICD co 0D0.o c.

S 0 (L 0 r
C) 0 H C41 -4 1.4 ft4-0 k0

a)0 0 -

Cd 0 0

Cd 0)0
4.) 0)~,

04 5- 0 5>
H4 4- 0 a

0o 00
1-4 C- 3 4. 0 ) a _'

'a 0 i> o '

a2) Cd0 .-- Dc

a) 0)

Cd 1 4  k 04 *401

45- -4 P

24- 4 r VC



TABLE 3.4

Running Times for Crude Monte Carlo and Expected Value Calculations

Ratio
Running Time for Running Time for of

Problem 'Crude' Monte Carlo Expected Value Technique Times

Problem 1: 664 sec 1866 sec 2.81

Long MAD

Problem 2: 822 sec 1666 sec 2.03
Short MAD

25



for one parameter will increase variance for some other parameter. Variance

reduction techniques must be carefully tailored to the parameters of importance,

in this case the kills involving two and three torpedo drops.

For ease in making programming changes to calculate the parameters

separately by torpedo drop, base runs with the current APALR, representing

crude Monte Carlo, were not made. Runs using the expected value technique

then provided efficiency factors for an expected value/statistical estimation

comparison. The average efficiency of the statistical estimation/crude Monte
Carlo comparison in Section 3.2 was determined to be a factor of 1.2. Multi-

plying the efficiencies from the expected value/statistical estimation compari-
sons by 1.2 generated the figures presented in Table 3. 3 as the efficiency of
expected value versus crude Monte Carlo. This combination of efficiency
factors is justified because the expected value technique necessarily incorpo-
rates statistical estimation scoring; once the kill/miss decision has been re-
moved from the game, the scoring must be by the pK s for each torpedo drop.
Thus there is no possible "expected value without statistical estimation" com-

parison to crude Mor,+d Carlo but only the combined efficiency.

3.4 SYSTEMATIC SAMPLING OF INITIAL SUBMARCNE POSITION

Systematic sampling is a variance reduction technique that usually finds

application in selecting initial or starting values for a random variable. Poten-

tial applications in APAIR include initial submarine or aircraft bearing and

location. Sampling in a systematic manner essentially serves to reduce the

contribution to the variance coming from the random variables being systema-

tically sampled.

To demonstrate this technique in APAIR, problems were run with the

aircraft initial location and both the aircraft and submarine initial bearings

fixed. This left the submarine starting location as the variable which was

systematically sampled as shown in Fig. 3. 1. The aircraft was initially

located at the origin while the submarine starting position was uniformly

distributed along the y-axis (north) between 0 and L. Both the aircraft and

the submarine were initially moving east as shown.
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Direction and
Location

Fig. 3.1. Starting Positions for Systematic Sampling

Demonstration

Systematic sampling was applied in two different ways. The first

was used on the long MAD gear problem and was implemented as follows:

To obtain starting positions for the first 10 histories, a random num-

ber R was selected from U(0, 1) and ten initial submarine positions wereu

located at

-- L u!10

y, = L/10 + LR.J/IO

Y3 = 2L/1o + LR /10

Y = 9L/10 + LR /10

The histories run using these initial starting conditions constituted the first

batch. Then another series of ten y Is was generated by selecting a second

random number from U(0, 1), and the second batch was run. The process

was continued until a total of 10 batches of results (or 100 histories) were

27



obtained. The results of these simulations were used to estimate the parame-

ters and sample variances using batched estimators. That is, an estimate

for PK was obtained for each batch by the usual methods. These batch esti-

may be denoted ' A final estimate was obtained from

10

PK 1/10 Pl.
i=1

and the sample variance was estimated from

s = 1/9 2

i=1

The results are shown in Table 3.5 which summarizes the variances obtained

with and without systematic sampling. It can be seen that the results are

rather mixed, and in some cases a worse result was obtained using systematic

sampling. Most of this variation is strictly statistical fluctuation due to the

unavoidably large variances in the efficiency estimates. That this is the case

may be seen from the efficiencies which are less than 1.0. Theoretically,

systematic sampling should always reduce variance and efficiencies should

always be 1.0 or greater. However, if efficiencies are close to 1, it is easy

to get estimates which are just below 1. 0.

Some of the variation in the systematic sampling efficiencies may also

represent a variation in how sensitive a parameter is to the submarine starting

location. The probability of kill (eventually, after enough localization) should

not be as dependent on the submarine's starting distance as the time taken to

localize and kill or the number of sonobuoys used in localization. Any parame-

ter which is not sen.ifive to submarine starting position will have a variance

which is likewise not sensitive to reduction of variance in selecting the sub-

marine starting position.
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I

The average efficiency gain for systematic sampling in the long

MAD problem was a factor of 1.34.

A second type of systematic sampling was used in the problem

with the short MAD gear. In this case, a new random number was used

each time a new starting position for the submarine was selected. Ten

strata were used with the starting position limited to fall between ranges

L1 and L 2. That is, the first ten starting positions were selected using

(L2 - L1 )
Yl = L1 +  1-2 Rul

= + (L2 - L1 )
L1 +  2I0 (Ru2 + 1.)

(L2 - LI )
Y3 = L +  10 (Ru3 + 2.)

(L2 - L1)
Y10 1 +  1--f (Ru10 + 9.)

where Rul, , Ruln are random samples from U(0, 1).

The samples in this case were batched as before and the results

presented in Table 3.6 were obtained. These results are seen to be quite

similar to those obtained for the long MAD gear. Again, a large variance

in the efficiency is apparent. Also, it appears that several of the param-

eters were insensitive to initial submarine starting position. The average

efficiency is 1. 28 with an overall uncertainty of about 20% expected in the

efficiency estimate.
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3.5 ANTITHETIC VARIATES FOR SAMPLING INITIAL SUBMARINE
POSITION

The final variance reduction technique applied to selection of the

submarine starting position was the use of antithetic variates. This was

performed for the same two situations described for systematic sampling

in the previous sections.

In its simplest application, use of antithetic variates seeks to generate

negatively correlated samples by selecting two values x', x" of the random

variable from the distribution f(x) using

=u yX f(x)dx

and

1-Ru = j. f(x)dx

where R is a random number selected from U1 ), 1). The values of

x' and x" are clearly correlated since they have been generated by the

same random number Ru. Also, xt and x" are negatively correlated

since when x' is large, x" will be smalL

In the application here, pairs of initial starting positions for the sub-

marine were selected according to the above formuat" ;' ;. Thus, when one

submarine starting position was selected far from the aircraft, a position

close to the aircraft was also selected fc -he nex+ history.

In the first problem, (i. e., where the long range MAD gear was used

and the submarine was located between 0 and L), the pairs of starting

positions were obtained using

y =RL

Y2 U
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and two histories were run.

In the second problem (i. e., with the short range MAD gear and

where the submarine was located between L1 and L2) the pairs of starting

positions were obtained using

Yl = L1 + (L 2 - L1 )Ru

= 2 +(L 1 - L2 )RuY2 - 2 1 h

and the two histories corresponding to these initial starting positions were

run.

In both cases, batching was performed to obtain estimates for the

variances. The results of the analyses are summarized in Tables 3.7 and

3. 8 respectively.

As was the case with systematic sampling, there was a wide variation

in efficiency and one variable gave worse results with the antithetic variates

than with crude sampling, indicating as before, a large variance for the

efficiency estimates and, possibly, several parameters which were not
sensitive to the initial starting values. Although it is theoretically possible

that the use of antithetic variates could give worse results than crude

sampling, it was not expected here and the single value less than 1.0 is prob-

ably a low estimate for an efficiency just above 1. 0. In any event, average

efficiencies of 1.12 and 1. 37 were obtained in the two problems. An .rror

of about *I0% is expected in these efficiencies.

3.6 CORRELATED SAMPLING FOR ESTIMATING DIFFERENCES IN MAD
GEAR EFFECTIVENESS

Correlated sampling is a procedure that can be used to reduce variance

in Monte Carlo simulation in the following general situations:

* The effect of a perturbation to a known problem is to be
determined.
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* The difference between estimated parameters in two problems
having similar characteristics is to be calculated.

9 A parametric study of several similar problems is to be
performed.

Such situations occur very frequently. In fact, in most studies the most im-

portant result to be investigated is the change in response of the system as a

problem cha. acteristic is varied. As will be seen, the payoff from various

types of correlation in sampling can be very high.

Use of the APAIR model could easily involve problems having one or

more of these characteristics. For example, the sensitivity to a range of

tactics presents a potential situation where correlated sampling could provide

substantial improvements in efficiency.

The problem selected for demonstration of correlated sampling in-

volved the short range and long range MAD detector cases discussed pre-

viously. The main parameter of interest to be calculated was the difference

between these two cases in the parameters used in prior sections. That is,

differences in:

* Probability of submarine kill

* Time to submarine kill

* Number of torpedos used per kill

* Number of sonobuoys of Types A and B used per kill.

The only difference in problem characteristics in the two cases was

a difference in MAD detection capabilities. This was expressed in a function

relating probability of detection to range of target from the aircraft, as shown

in Fig. 3.2.
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Fig. 3.2 Detection probabilities for the long range and
short range MAD gear ,,fed in the APAIR studies
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To demonstrate the concept of correlated sampling for this applica-

tion, we define

PS = probability of submarine kill using the short range MAD detectors

L= probability of submarine kill using the long range MAD detectors

The problem of interest is to perform Monte Carlo simulations to estimate

the difference

A=PL - PS

in the case of probability of submarine kill. Similar definitions apply to the

remainder of the parameters of interest.

The crude Monte Carlo approach would first estimate Ps (denoted by

p ) and then PL (denoted by pj) using another set of independent histories.
Then the difference A is estimated using

The variance in l is

2 2A

for the case of independent histories in the PS and PL estimations. Suppose,
however, that positively correlated estimates for pS (say D^,) and for P-

I -- --S
(say L were used to estimate A. Then for

PL -PS

the variance in A will be given by

aA (PL )+ a (PS) -2 coy

where coy (PS) PL) is the covariance between pS and PL' Since p. and
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iA

Lare positively correlated, then

coy 6pS, p 0, and hence

Thus, the objective of correlated sampling is to develop a sampling

strategy that will currelate the estimators PS and PL This technique can

be extremely powerful when small perturbations of problems are to be studied

since the correlations induLed will tend to emphasize differences in the prob-

lems due to the perturbation rather than differences due to statistical fluctua-

tions which are usually the controlling differences in cases with independent

histories.

The above arguments for improvement in the variance using correlated

sampling for the probability of kill would also apply directly to estimating the

differences in other ASW parameters.

Correlation can be accomplished in several ways. For example, the

short and long range MAD problems could be simulated independently except

the same random number could be used in determining the outcome once the

probability of detection had been obtained from the curves in Fig. 3. 2. Thus,

correlation between the two results would exist. Another way, and the one
that was used here, is to control the random numbers in the two simulations,

by using the same random numbers in the two problems until a differnnce in
detection occurs in the problems due to the difference in the MAD gear. Two

separate runs were made, but corresponding histories in the two simulations

were made to start at the same point in the random number sequence. Thus the
histories would be identical up to the point where the difference in MAD gear

resulted in different decisions. At the time the detectors came into play, the de-

tection outcome was selected in each case from the same random number. Subse-
quently, the histories continued independently until the end of the game. More

39



r.-W 

M

correlation could have been introduced by subsequently using identical random

numbers wherever the problem logic allowed.

The program changes made to induce this much correlation were

fairly simple. Two separate random number generators were used in each

simulation. The first was used once each history to give a random starting

point in the sequence of the second generator; it produced the same sequence

of starting points in both simulations. The second generator was used in the

history to obtain random numbers for the simulation process. By starting at the

same point in both cases, identical histories will be generated until there is a

difference in decisions made concerning aMAD detection. Even though the first

history in one problem might use more random numbers than in the other

problem, the random number sequences would be returned to the same point

at the start of the second history in each problem.

To calculate the variance of the difference, A, in the two cases, itA

was necessary to obtain 'batch' values, An, for the difference in the batch
values PLn and pSn that have been described in earlier sections. The batch

values of PSn' PLn' and the otrLer parameters were written on temporary

files as the simulations progressed. Then a separate small program was

written to combine these files and calculate the batch differences in the vari-

ous parameters. The final estimated difference was the average of the batch

differences and the variance of the difference was determined from the sp"ead

of the sample batch differences, Specifically, by grouping the 100 histories

of the long MAD simulation into batches of 10, one calculates

10

PL1 = 1/10 P
i=1

20

PL2 = 1/10 P 7
i=40
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100

PL10 1 1/10 E P.j
i- 91

where PLn is the estimate of P. from batch n and PKiis the estimate of

pK from history i. Similar formulas were used to obtain batch estimates for

the other parameters in the long and short simulations. Then the batch differ-

ences were calculated:

I -PLI" PSI

A A

The final estimator for the difference in probability of kill is

10
- /10 E A n

n==

and the estimated variance is

1 10 10 \21
(A)_ (An 19 A E n no)

n=[ n=1 n=1

Rather than make two additional uncorrelated runs to get comparison variance

estimates for the uncorrelated or crude Monte Carlo, the uncorrelated

equation

.
2  

A 2 A A2

was used with r 10 ( 10
n=1 niI
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and

or (P) 9 IO Ln - (1/10 Edn)2]

The results of the calculations are shown in Table 3.9. The greatest

increase in efficiency (a factor of 3) was found for the probability of kill. The

average improvement over all parameters was almost a, factor of 2. Thus,
the running time for the same variance could be reduced by about a factor of

2 by using correlated sampling.

There was a slight increase in running time (although the vari-

ance was substantially reduced) with variance reduction since some additional

bookkeeping was used in the program. The running time could have been re-
duced with some additional effort by not recalculating with identical random

numbers the part of each history up to the point where the detection came into

play, but by simply saving the results of one case for application to the other.

However, this would have involved more extensive computer program modifica-

tions than were warranted here.

Analysis of Correlated Histories

One of the great benefits of correlation is the potential it provides to

gain insight into understanding simulation problems. For example, if two

highly correlated histories, one with and one without a problem perturbation

were available, then, most of the time, differences observed in the histories will

be due to variations in the problem perturbation rather than statistical variations.

The problem of the two MAD detectors was ideally suited for demon-

strating the possibility of analysis of correlated histories since the MAD detectors
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TABLE 3.9

Variance Reduction Using Correlated Sampling For Estimating Differences
Between Short and Long Range MAD Gear Parameters

Estimated Difference
in Expected Value

(Long Range MAD - Variance With Variance With

Short Range MAD) Crude Sampling Correlated Sampling Efficiency

Probability of 2.96 x 10 - 3  9.6 x 10 - 4  3.0
Submarine Kill

Time to
Submarine Kill 15.0 9.2 1.58

Number of Torpedos 2.2 x 101 3 I. 6 x 10- 3  1.33
per Kill

Sonobuoys Used per 0.166 0.068 2.40
Kill - Type A

Sonobuoys Used per 0174 0.144 1.17
Kill - Type B

Average Efficiency Improvement a, 1.9
Ratio of time increase with variance reduction - 1.03
Correlated Sampling: Two separate runs were made. Histories were identical
up to point where difference in MAD gear lead to a divergence in histories.

1.0

SPD LONG

SHOOR
0

RANGE
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were sufficiently similar so that variations on estimates for the kill

probability could be lost in the statistics of the problem. More specifically,

consider the sample series of single histories shown in Table 3. 10. These

histories were obtained from runs correlated in the manner described above.

There are three types of situations that can be identified in Table

3.10. First, there are a large number of histories where the short and long

range gear give the same result. This situation should be expected since the

gear is similar and the histories are highly correlated. That is, when a short

range detection occurs with the short MAD, it will also occur with the long MAD.

Also when no detection occurs for the long MAD at long ranges, none will occur

for the short MAD.

At intermediate ranges where the two MAD curves differ, this, of

course, is not true. This is manifested by the second situation (history 8)

where the long range MAD detected the submarine and effected a kill and the

short range MAD didn'1 with no kill as a result. This type of history was also

expected.

Of most interest is the third situation where, in histories I and 9, the

long range MAD gear produces a lower kill probability than the short MAD

gear although both types detected the submarine. This result was quite un-

expected and would tend to indicate there are considerations other than varia-

tions in IMAD gear which make the two problems different. For example, the

tactics used might be appropriate to the short MAD detector but might be

'trigger happy' when used with the long MAD gear resulting in premature torpedo

drops with a lower kill probability. Had the histories not been correlated,

it would have been difficult, due to the statistical variation from history to

history, to notice that such events were occurring. In this manner, therefore,

correlation can identify which histories should be examined in detail to provide

more insight into the problem.
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Another application of correlated sampling is presented in the follow-

ing section.

3.7 HISTORY REANALYSIS FOR ESTIMATING DIFFERENCES IN MAD
GEAR EFFECTIVENESS

In the second application of correlated sampling to APAIR, reanalysis

of histories using weight facturs to correct for the difference in problem char-

acteristics was used rather than controlling the random numbers. Effectively

the following was performed for history j:

* A base history was run using crude sampling for the long MAD
gear up to the point where the possibility of detection was to be
tested.

0 Given the range, a probability of detection for the long range
gear (PL) and the short range gear (Ps) were determined
from the curves shown in Fig. 3.3.

* A random number was compared to p to determine if a
detection occurred and the history coninued, using the results
of that random decision.

• Weighting factors were assigned to the history according to
the following rules:

If the first test for a detection with the long gear resulted in
a detection, a weight correction factor of W1 - = p /P was
assigned to account for the short range gear. If te First
attempt resulted in no detection, he the assigned weighting
factor was

i-ps
Wl I _PL

The history continues for subsequent tests of detection with the
long MAD gear by assigning weights according to

PS

J PL W i '
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Long range MAD

0.5 Short range
• -" MAD

CImportance function
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Range of Submarine from Aircraft

Fig. 3.3 Probability of detection versus range for the
MAD detectors used in the demonstration of
history reanalysis and importance sampling.
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if a detection occurred on the i+1 st test and

W ~1 -P s Wi+1, j -- ' L Wi

when a nondetection occurred on the i+ 1 st use of the MAD
gear. This is continued until the game stops due to a kill or
some other reason (e. g., sonobuoy stores exhausted). The
final weighting factor is defined as W..3

9 If a kill occurred in this history then

n. = 1

otherwise

n. = 0

(Note that the total number of kills in N histories is simply

N

Nk L n. )
j=1

The above series of steps was performed for the N histories and the

following formulas were used to estimate the differences in the parameters

of interest.

Consider first the probability of kill. The estimated probability of

kill for the long gear is given by

N

PL 11N En j

j=1

The estimated probability of kill for the short gear is given by

N

= 1/NE n.W
j=1
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The difference in probability of kill (long MAD - short MAD) is

N

A = 1/NLn 1 (1 -W.)
j=1

Similar considerations were used for the time to kill. If history j

resulted in a kill and the time of kill was Ti, the average time to kill for the

long MAD is

N

L= NkL n.T.

while for the short MAD it is

NTs -- n'jT'jW"
PsN j=l j

(psN is the 'number' of kills in the short MAD problem and is the correct

normalizing factor for the time to kill and other parameters.) . In a similar

manner the remaining parameters (number of torpedos or sonobuoys used

per kill) were calculated.

It is clear the results obtained for long and short range detectors are

highly correlated. The histories for the two cases are not only identical up

to the point of possible detection, but they continue to be correlated throughout.

When a kill is registered due to the use of the long range gear, it is also

registered for the short range gear but carries a different weight. As the

random choices made are appropriate to the long gear, they will not be
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optimum for the short range gear. This will increase the variance of the

short range gear estimates, but the high degree of correlation should still

reduce the total variance of the difference.

A second significant advantage of the above approach is that the results

of two problems have been obtained by actually performing only one simulation

(i. e., for the long gear) although some additional computation is required to

perform the weighting. However, the total computing time required was only

53% of that needed to perform two independent calculations.

Thus, to generate the required correlated cases, approximately one-

half of the computational effort was required. In addition to this time saving,

there were substantial improvements in the variances of the different parame-

ters estimated. These results are summarized in Table 3. 11 where it is seen

that substantial improvements in the efficiency were realized. For example,

in estimating the stores used (torpedos and Type B buoys) about a factor of

10 improvement in efficiency was obtained. The overall average efficiency

was found to be almost 7. This can, of course, be interpreted as a reduction

in computational time that can be realized using the correlated sampling scheme

described here.

The short range MAD detection probability curve used in this technique

and that described in the following section is shown in Fig. 3. 3. This differs

from the short range gear shown in Fig. 3.2 which was used I.n the other %AA"i"-

of this report. This change was made because use of the curve in Fig. 3.2

would have resulted in a considerable number of identically zero weights when-

ever a detection occurred beyond the range of the short gear. This would

have destroyed much of the correlation in the histories and counteracted the

effect we were trying to illustrate. Therefore, a dummy short MAD gear curve

having the same limits of range as the long range gear but with a lowered proba-

bility of detection at the longer ranges was used. Paradoxically, this had the

effect of making the two types of detector more similar, thus making it harder

to calculate the difference between them.
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TABLE 3.11

Variance Reduction Using History Reanalysis For Estimating Differences
Between Short and Long Range MAD Gear

Estimated Difference
in Expected Value

(Long Range - Short Variance With Variance With
Range) Crude Sampling History Reanalysis Efficiency

Probability of 4.2 x 10- 3  6.6 x 10 - 3  1.21
Submarine Kill

Time to
Submarine Kill 7.8 2.05 7.2

Number of Torpedos 1. 25 x 10 - 2 2.56 x 10 - 3  9.3
per Kill

Sonobuoys Used per 0.097 0.0289 6.4
Kill - Type A

Sonobuoys Usea per 0.204 0.040 9.7
Kill - Type B

Average Efficiency Improvement - 6.8
Ratio of time decrease with variance reduction -0. 53
History Reanalysis: One run was made using the long range gear probability
distribution for detection. Simultaneously, calculations were made for short
range gear using weighting factors to correct for difference in probability
between the two distributions.

No
Detection Detection 1. 0 --(PL) (-PL) LONG

RAANGE

0SHORT

Weight -MA
correction w- wa S
for Short P 1 -L _________

Gear L L_________A

______ RANGE - -
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The estimated differences in the various parameters and their variances

were calculated by the same batching techniques as described in the previous

section. For this technique the uncorrelated difference variances were de-

termined by

"2 A 2 A 2A2
&(A) = (PL ) +a (p) (PL)22

where a (pL) was determined from the batch values of PL" Due to the weight^

corrections, a a^(@S) calculated from the reanalyzed histories would have2.
been much larger than a (pS) from an uncorrelated case. Rather than make

a separate uncorrelated run, it was simply assumed that &2( S) 2(pL)

A third variation involving correlated sampling will be described next.

3.8 IMPORTANCE SAMPLING WITH CORRELATION ESTIMATING
DIFFERENCES IN MAD GEAR EFFECTIVENESS

To illustrate the technique of importance sampling, which has wide

applicability at many stages of a Monte Carlo simulation, a demonstration

involving an extension of the previous correlation problem was devised. It

was very similar to the calculation of the previous section except that, in

place of the long rage MAD detection probability; an 'importance function'

detection probability, mid-way between the long ard short range curves as

shown in Fig. 3.3, was used in making detect/no detect decisions in the game.

As explained above, the use of the long MAD curve to generate the his-

tories results in choices which are not appropriate to the short MAD gear.

This increases the variance of the short MAD part of the calculation. The use

of an 'importance function' curve generates choices which are more optimum

for the short gear but less optiinmu for the long MAD. It was hoped that

the result would be a reduced variance overall.
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The procedure used in this simulation was a mere extension of the

procedure described in the previous section. That is, for history j the follow-

ing sequence of steps took place:

0 A base history was run using crude sampling. At points in-the
problem where detection was to be tested, the importance func-tion was used in a random determination of whether or not a
detection occurred.

* From the range, detection probabilities were derived from the
curves for the 'importance' (1 ), the long MAD (PL), and the
short MAD (Ps) as given in Fig. 3. 3.

* A random number was compared to p1 to determine if detection
occurred.

* If this first test resulted in a detection, an assigned weight
correction for the short range gear was set to

W S  PS
ij T,

and a weight for the long range gear of

L PL
wlj - -

was assigned.

If no detection occurred, the respective weights assigned were

i-ps

and

n lj 1-p1
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0 The history continued for subsequent tests of detection by assign-
ing respective weights according to:

w 1 PS wS.

p i,]

for detection on the i+lst test for submarine detection and

W S  _ -Ps wS

i+, 1-p 1  ,

for nondetletions on the i+1 st test with similar equations for wL,
This is continued until a kill occurs or the history is otherwise
terminated. The Ainal weighting factors calculated in the histor
are defined as W. and W.

* If a kill occurred in this history, then

n. - 1

otherwise

n. - 0

(the total number of kills in N histories is

N
N k nj)

The above series of steps was performed for the N histories and the
following formulas were used to estimate the differences in the parameters of

interest.

For the probability of kill, the estimate for the short range gear was
given by

N

j=1
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F

and for the long range gear,

N

j=1

The difference is simply

N
A A A~.

A = pL-s = 1/N n(wj -W.)

j=1

Similarly, if T. is the time to kill on history j (assuming a killJ

occurred), the average time to kill a submarine would be given by

N
1 n2y.!TrL

PLN j=1

and

N
T - l n.T.WS

pSN j=

The number of torpedos and sonobuoys used were calculated in a similar

manner.

The correlation between the results for the long and short MAD detec-

tors in this case arises from the fact that their estimates are derived from the

same importance sampled set of histories. Also, it is important to recognize

that the running time is approximately one-half of that required to run two

independent cases. In fact, it was found that the ratio of the running time

with and without the correlation was a factor of 0. 53, which is the same as

the result in the previous case.
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As expected, there was substantial improvement in the variance of the

estimates. The results are summarized in Table 3.12. It can be seen that a

factor of almost 20 was achieved in the efficiency of the estimator for the dif-

ference in the number of torpedos used. Also, a substantial improvement (a

factor of 8.5) in the variance of the difference in the kill probability was

realized. An average efficiency of 7. 2 was fond which, as before, can be con-

strued as a direct factor for improvement in problem running time.

.5
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TABLE 3.12

Variance Reduction Using Importance Sampling For Estimating Differences
Between Short and Long Range MAD Gear

Estimated Differences
in Expected Values Variance With
(Long Range - Short Straightforward Variance With

Range) Sampling Correlation Efficiency

Probability of 4.2 x 10 - 3  1.22 x 10 - 3  8.5
Submarine Kill

Time toTmto7.8 8.3 1.8
Submarine Kill

Number of Torpedos -25 x 10-2 1.21 x 10-3 19. 7
per Kill - 1

Sonobuoys Used per 0.097 0.062 3.0
Kill - Type A

Sonobuoys Used per 0.204 0.077 5.0
Kill - Type B

Average efficiency improvement = 7.2
Ratio of time decrease with variance reduction -0. 53
Importance Sampling: One run was made using the importance function for
selection. Simultaneously calculations were made for s- . and long range
gear using weighting factors to 2orrect for differences in the probability
distributions.

No
Detection Detection

i 0

Weight P I-ps P
correction W s • W .
(short gear) PI I 0 ) pI

r0 P5  SHORT
Weight P L I-PL MADcorrection Wl . WL  P

(long gear) _ _ 0
RANGE
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APPENDIX A

MIRAN -A MACIIINE INDEPENDENT PACKAGE FOR GENERATING
UNWORM RANDOM NUMNBERS

A. 1 GENERAL DISCUSSION

The standard technique for producing uniform random numbers on
modern higlh-spaed computers is an algorithm known as the multiplicative

congruential method. This -method is expressed mathematically as

R11+1 = X.R n (modulo P)

Since the R's are integers ranging from 1 to P-i, successive real random

numbers uniformly distributed from 0 to I are generated by dividing Rn by P.

The properties of this technique as a random number generator (RNG) are

highly dependent on the choice of the generator, X, and the modulus, P.

Unfortunately, there are many RNGs in curr .nt use which do not approximate

randomness closely enough to be sufficient for all Monte Carlo calculations

and, what is far worse, do manage to pass some of the simple tests for

randomness. There are, however, several choices of X and P which have

been thoroughly tested, both theoretically 9 and through many years of actual
use~n ont Calo alclatons, and hich appear to be sufficiently randomuse in MontefCario ca-cu" -i and ,, .

for general usage.

For reasons of convenience and efficiency, P is generally taken to

be 2 where m is the number of bits, excluding the sign bit, in a single

word on the particular computer being used. The generation process starts

with a fixed generator, X, and a starting value, R0 . The full product

from the multiplication of X and R would usually fill two computer word.

however, the modulo P in the algorithm means that we only need the single

word, R1 , comprising the low order half of the .R0 product. The randm

number generation is completed by converting R1 to a real variable and
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dividing by P. R1 replaces R in storage in the random number subroutine
-aid the process is ready to begin anew.

In this sort of a process there have been two barriers to developing

a Fortran RNG subroutine %&hich would be independent of the particular com-

puter for which it was designed. The first is the modulus P, which varies

from comuter to computer as the word length varies. [Choosing a universal

value of P to fit the smallest computer is not a good solution as the proper-

ties of a RNG become less rartnom as P is made smaller, to the extent that

Coveyou and MacPherson ( 9) consider them questionable for P = 231

(IBM 360 series) and borderline for P = 235 (IBM 7090, Univac 1108, etc.).]

The second problem is that the .ign bit of R may need to be cleared follow-

ing the multiplication. Clearing ti. sign bit generally requires some trickery

in Fortran which varies from computer to computer as the mode of represen-

tation (one's complement, two's complement, uncomplemented, etc.) of

negative numbers varies.

The way around these obstacles is to use an explicit multiple pre-

cision representation. The integers and operations involved in the RNG

algorithm are separated into component parts in such a way that all operations

are kept within a single computer word and no overflows into the sign bit are

made, thus avoiding the sign-clearing problem. Through multiple precision

a sufficiently large modulus for good RNG properties may he used even

though the actual computer word size is small. An initialization call must

be made to conv.y to tho RNG the maximum integer allowed on the particular

computer being used so that it can set up an apprcpriate multiple precision

representation.

The advantage of a RNG that is machine indepenident is simple: it

greatly facilitates the exchange and checkout of Monte Carlo programs between

different computers. The price paid for this advantage is also simple: it

is a much slower method of producing random numbers. However, it is
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still fast enough (several thousand random numbers generated in one second) that

the time difference will not be noticed in most Monte Carlo applications.

A. 2 CHOICE OF A SPECIFIC ALCORITHM FOR MIRAN

The work of Coveyou and MacPherso (9) has provided a thorough

theoref ic.-1 analysis of many commonly used RNGs. Thcy show that the cor-

relation properties of a RNG are strongly dependent on the modulus P.

For values of P = 231 or 2 35, there must necessarily be a waviness or
graininess to the joint distribution of two, three, and four consecutive ran-

dora numbers that could lead to incorrect results for some Monte Carlo cal-
culations. For P = 2 47 , the departures from true randomness are small

enough as to be negligible for practical calculations. Among the specific

generators. X, tested by Coveyou and MacPherscn, there is one, X = 515,

which has good statistical properties and which may be easily produced by

a machine independent subroutine. (In a subroutine designed for use on com-

puters of varying word length, specifying a fixed 47-bit integer through

data statements would be difficult. However, 515 may easily be produced

by multiplying 5's after the exact multiple precision representation needed
r47 .15

has been establiched.) In addition the choice of P = 2 and X = 5 has

an added advantage: this particular choice of a RNG has seen long usage

(several ihousand hours on a CDC 1604 a %J at O.,,Lak eN Ridge Nt.Iona. Lab r at,)

in Monte Carlo computations without any apparent problems.

A. 3 MULTIPLE PRECISION REPRESENTATION

In the basic algorithm used by MIRAN, A and the R values will

be 47-bit integers. This may exceed machine capacity. To keep all arith-

metic operations from overflowing a single machine word, these integers

are stored in an array wherein each word of the array constitutes a 'digit'

in a representation of the integer to a particular base, This basis, called

BASE; is chosen at execution time so that (BASE) 2 does not exceed the maxi-

mum integer allowed on the particular computer being used. Thus, for
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example, on a machine with 35-bit words (unsigned), BASE would be 217

and each 47-bit integer would be broken down into 3 words as follows:

47-bit Integer Multiple Precision Representation

blb ..... b b b b .... b +0 ..... O b word 3
1 2"" 13'14"*' 30 31" 47 1, "* 13wr2

+0 ..... 0b14 b 30 word2

+ 0..... 0b31 .... b47 wordI

Note that the 'digits' are stored in the array in 'reverse' order, i.e.,

word 1 is the least significant 17 bits of the number. Also, since 17 does

not go evenly into 47, the last word contains only 13 bits.

Arithmetic in a multiple precision representation is carried out in

the same manner as arithmetic is normally done by hand. The addition of

two numbers, for example, is done digit by digit. When two 'digits', or words,

are added there may be an overflow into the 18 t h bit of the result. This must

be detected, the overflow cleared out, and a carry of 1 addec into the next

higher 'digit'. Multiplication is slightly more complex. It is again carried

out digit by digit and the resulting products are added, keeping them in appro-

priate columns, to get the final product. The multiplication of two 'digits'

produces, of course, a two-digit product which is initially contained in a

single computer word. This must be broken down into a high-order digit and

a low-order digit with the high-order digit being added into the next higher

column of the result. As each column is added, a carry over into the next

higher column may be needed. Thus, in our example where three words were

used for each integer, nine multiplies and several additions would be needed

to form the six-word full product as schematized below.
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d3  d2  d
d3

h2 1  /"21

h 31 31

h 1 2  "12

h 22 22

32 32

h 13 13

h 23 '23

h3 3  33

S6  S5 S4  S3  S2  SI

where h.. and 4. are the high and low order parts of the product of

d. and d.I J

A. 4 USE OF MIRAN PACKAGE

inif iazlization:

Before generating any random numbers, it is necessary to make an

initialization call. This is done by the statement

CALL RANSET (MAXINT, NSTART)

where MAXINT is the maximum integer allowed on the computer (or compiler)

being used. NSTART is the starting value, R., to be used in the random

number -sequence. If NSTART is less than or equal to 0, a default value

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd

number will be used.
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For example MAXINT = 35 -1 on a 1108, 248 -1 on a CDC-6600, etc.

Good va!,ies for NSTART are any odd integer although frequent use of

small odd integers is not recommended for calculations employing a re-

lativcly small number of random numbers.

The randtom numbers are generated in subroutine UR1IND which may

be used as either a function subroutine or as an ordinary subroutine return-

ing a value. Thus, either

CALL UrU ND(R)

or

R = URA ND(X)

will store a uniform random number in R. (Note that in the second form

the same random number will also be stored in X. Thus, X must be a

Fortran variable and not a constant.)

Limitaticns of MIRAN:

MIRAN will work on all computers where MAXINT is greater than

1023 and less than 294. (These limits are practical and not theoretical and

could be extended if it were ever necessary.)

A. 5 MIRAN PROG13AM DETAILS

The Fortran listings of the tvo MLAN routines UPAND and RANSET

are presented in Figures A-1 and A-2. The accompanying logic flow is de-

tailed in Figures A-3 and A-4. Additional explanation of the last step in the

URAND logic is provided below.

The two subroutines URAND and RANSET communicate through a

labelled common, MIRNG which contains

RAN(10) - An array containing the 'digits' of the current (or last)

multiple precision random integer
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Figure A-2. Fortran listing of RANSET

68



START

Clear out SUM array
30

For i 1, NWRD and j=1, NWRD+1- i:

Multiply i 'digit' of RAN by j 'digit' of GEN

Separate the 'two-digit' product into a high-order part HPROD

and low-order part, LPROD
Add LPROD into the (i + th column of SUM

Add HPROD into .he (i + j)th column of SUM

For i = 1, NVRD-I
Separate i word of SUM into a single 'digit' plus the carry

into the next higher column

h5 Add the carry into the (i + 1)th word of SUM

Reduce the last word of SUM modulo MOD

Store SUM in RAN for next entry to URAND

Convert SUM to bingle precision floating poilt and divide it by

P. Return this as the random number

END

Figure A-3, Logic flow chart for URAND
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'START

£Determine lB such that 4 B<MAXINT <1+

BASE = 2 B

Calculate the number of words needed to represent 47-bit

integers to the base, BASE.

Calculate REM, number of bits in the last word of the

representation. MOD=2 - M

Get floating point values of 18ASE and MOD

Clear out random number and generator arrays

Calculate X = 515 by multiplying by 5 15 times

If user gave NSTART = 0, set NSTART to default value of

2001

Make sure NSTART is odd.

Convert NSTART to multiple precision representation.

ED

Figure A-4. Logic flow chart for RANSET
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GEN(10) - An array containing the generator X(= 5)15 in multiple

precision representation

NWRD - The number of words used in the multiple precision

representation of an integer

BASE - The base used in the multiple precision representation

MOD - The maximum value of the highest order 'digit' in the

multiple precision representation

FBASE - Floating point value of BASE

FMOD - Floating point value of MOD

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are

Fortran real quantities.

An alternative method (unfortunately, not machine independent) of giving

the routine a starting value is to save the array RAN at the end of a run and to

restore RAN at the start of the new run (just after the RANSET call).

In the last step of the URAND flow the objective is conversion

of the multiple precision integer random number R to a floating point

random number X between 0 and 1. The multiple precision integer

produced by the random number algorithm is represented by the 'digits'

r ! , r 2 , .... ,r n (remember that r 1 is the lowest order digit. Thus,

2 N-1
R r 1 + (BASE). r2 + (BASE) r 3 +.... + (BASE) rN

Notice that we have, from the manner in which N and MOD were established,

P = (BASE)N 1 MOD
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The uniform random number desired is given by R/P. Thus we have,

r R rI r 2  r 3N-isE)N-2 + )N-3.
(BASE) N - I . MOD (BASE) •* MOD (BASE) N MOD

+ + rN 1  rN
+ ..+BASE- MOD + O

+ 1 1 (r 2 + 1 .r ) ... )9= D (rN +BASE (rN- N +  BASE ,r2BASE 

Starting from the right it is easy to compute this iteratively.

A. 6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN

For checkout purposes, Table A-1 lists the first 100 random num-

bers produced by MIRAN when the default value of NSTART, 2001, is used

as the starting random number.
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